Awareness around mental health disorders is increasing, as are the number of people who suffer from them—a figure exacerbated by the pandemic. Although these factors are grim, they are actually catalysts for psychedelic stocks.

The Societal Cost

Today, greater emphasis is put towards combating mental health. In part because its societal cost is increasingly difficult to ignore. And the solutions to them may take on various forms. For instance, alternative medication. There are over 100 million people who are resistant to traditional treatments for depression. Some studies reveal up to ⅓ of patients experience treatment-resistant depression. As a result, this is where the application of psychedelics in microdoses is perceived to add value—and where a market may arise.

Regulatory Status

  1. Health Canada Health Canada granted 16 exemptions to a selection of nurses, doctors, therapists and social workers. Thus, allowing them to possess and use psilocybin for personal training without fear of prosecution under the country’s drug laws.
  2. The FDA The FDA declared psychedelics a breakthrough therapy for severe depression.
  3. The State of Oregon Oregon approves a legal framework for the therapeutic use of psilocybin. Becoming the first state to do so.

Mushrooming Valuations

Investors love a good story. And legalizing psychedelic drugs to combat the growing societal challenge that is mental health is as good as it gets. Some of the earlier research and studies on psychedelics are expected to be released by mid-2021, and investors are already getting ahead of this in optimistic anticipation. This is evident in the valuations of some of these companies, which in some cases are already reaching a billion dollars. Welcome to the shroom boom. Source:YCharts & Frontiers In Psychology Notes: This data was released on September 4, 2020 on Today’s connected cars come stocked with as many as 200 onboard sensors, tracking everything from engine temperature to seatbelt status. And all those sensors create reams of data, which will increase exponentially as the autonomous driving revolution gathers pace.  With carmakers planning on uploading 50-70% of that data, this has serious implications for policymakers, manufacturers, and local network infrastructure. In this visualization from our sponsor Global X ETFs, we ask the question: will connected cars break the internet?

Data is a Plural Noun

Just how much data could it possibly be? There are lots of estimates out there, from as much as 450 TB per day for robotaxis, to as little as 0.383 TB per hour for a minimally connected car. This visualization adds up the outputs from sensors found in a typical connected car of the future, with at least some self-driving capabilities.  The focus is on the kinds of sensors that an automated vehicle might use, because these are the data hogs. Sensors like the one that turns on your check-oil-light probably doesn’t produce that much data. But a 4K camera at 30 frames a second, on the other hand, produces 5.4 TB per hour. All together, you could have somewhere between 1.4 TB and 19 TB per hour. Given that U.S. drivers spend 17,600 minutes driving per year, a vehicle could produce between 380 and 5,100 TB every year.  To put that upper range into perspective, the largest commercially available computer storage—the 100 TB SSD Exadrive from Nimbus—would be full in 5 hours. A standard Blu-ray disc (50 GB) would be full in under 2 seconds.

Lag is a Drag

The problem is twofold. In the first place, the internet is better at downloading than uploading. And this makes sense when you think about it. How often are you uploading a video, versus downloading or streaming one? Average global mobile download speeds were 30.78 MB/s in July 2022, against 8.55 MB/s for uploads. Fixed broadband is much higher of course, but no one is suggesting that you connect really, really long network cables to moving vehicles.

Ultimately, there isn’t enough bandwidth to go around. Consider the types of data traffic that a connected car could produce:

Vehicle-to-vehicle (V2V) Vehicle-to-grid (V2G) Vehicles-to-people (V2P) Vehicles-to-infrastructure (V2I) Vehicles-to-everything (V2E)

The network just won’t be able to handle it.

Moreover, lag needs to be relatively non-existent for roads to be safe. If a traffic camera detects that another car has run a red light and is about to t-bone you, that message needs to get to you right now, not in a few seconds.

Full to the Gunwales

The second problem is storage. Just where is all this data supposed to go? In 2021, total global data storage capacity was 8 zettabytes (ZB) and is set to double to 16 ZB by 2025.

One study predicted that connected cars could be producing up to 10 exabytes per month, a thousand-fold increase over current data volumes.  

At that rate, 8 ZB will be full in 2.2 years, which seems like a long time until you consider that we still need a place to put the rest of our data too.

At the Bleeding Edge

Fortunately, not all of that data needs to be uploaded. As already noted, automakers are only interested in uploading some of that. Also, privacy legislation in some jurisdictions may not allow highly personal data, like a car’s exact location, to be shared with manufacturers.

Uploading could also move to off-peak hours to even out demand on network infrastructure. Plug in your EV at the end of the day to charge, and upload data in the evening, when network traffic is down. This would be good for maintenance logs, but less useful for the kind of real-time data discussed above.

For that, Edge Computing could hold the answer. The Automotive Edge Computing Consortium has a plan for a next generation network based on distributed computing on localized networks. Storage and computing resources stay closer to the data source—the connected car—to improve response times and reduce bandwidth loads. 

Invest in the Future of Road Transport

By 2030, 95% of new vehicles sold will be connected vehicles, up from 50% today, and companies are racing to meet the challenge, creating investing opportunities.

Learn more about the Global X Autonomous & Electric Vehicles ETF (DRIV). It provides exposure to companies involved in the development of autonomous vehicles, EVs, and EV components and materials. 

And be sure to read about how experiential technologies like Edge Computing are driving change in road transport in Charting Disruption. This joint report by Global X ETFs and the Wall Street Journal is also available as a downloadable PDF.

Why Investors Are Psyched About Psychedelic Stocks - 18Why Investors Are Psyched About Psychedelic Stocks - 27Why Investors Are Psyched About Psychedelic Stocks - 52Why Investors Are Psyched About Psychedelic Stocks - 49Why Investors Are Psyched About Psychedelic Stocks - 51Why Investors Are Psyched About Psychedelic Stocks - 96Why Investors Are Psyched About Psychedelic Stocks - 64Why Investors Are Psyched About Psychedelic Stocks - 53Why Investors Are Psyched About Psychedelic Stocks - 20Why Investors Are Psyched About Psychedelic Stocks - 96Why Investors Are Psyched About Psychedelic Stocks - 69Why Investors Are Psyched About Psychedelic Stocks - 92Why Investors Are Psyched About Psychedelic Stocks - 41